Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Chem Biol Interact ; 393: 110950, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38479715

RESUMO

It is well known that anthracene is a persistent organic pollutant. Among the four natural polycyclic aromatic hydrocarbons (PAHs) degrading strains, Comamonas testosterone (CT1) was selected as the strain with the highest degradation efficiency. In the present study, prokaryotic transcriptome analysis of CT1 revealed an increase in a gene that encodes tryptophane-2,3-dioxygenase (T23D) in the anthracene and erythromycin groups compared to CK. Compared to the wild-type CT1 strain, anthracene degradation by the CtT23D knockout mutant (CT-M1) was significantly reduced. Compared to Escherichia coli (DH5α), CtT23D transformed DH5α (EC-M1) had a higher degradation efficiency for anthracene. The recombinant protein rT23D oxidized tryptophan at pH 7.0 and 37 °C with an enzyme activity of 2.42 ± 0.06 µmol min-1·mg-1 protein. In addition, gas chromatography-mass (GC-MS) analysis of anthracene degradation by EC-M1 and the purified rT23D revealed that 2-methyl-1-benzofuran-3-carbaldehyde is an anthracene metabolite, suggesting that it is a new pathway.


Assuntos
Comamonas testosteroni , Dioxigenases , Hidrocarbonetos Policíclicos Aromáticos , Comamonas testosteroni/genética , Dioxigenases/metabolismo , Triptofano , Antracenos , Hidrocarbonetos Policíclicos Aromáticos/metabolismo
2.
Redox Biol ; 72: 103082, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38527399

RESUMO

The explosive compound 2,4,6-trinitrotoluene (TNT) is well known as a major component of munitions. In addition to its potential carcinogenicity and mutagenicity in humans, recent reports have highlighted TNT toxicities in diverse organisms due to its occurrence in the environment. These toxic effects have been linked to the intracellular metabolism of TNT, which is generally characterised by redox cycling and the generation of noxious reactive molecules. The reactive intermediates formed, such as nitroso and hydroxylamine compounds, also interact with oxygen molecules and cellular components to cause macromolecular damage and oxidative stress. The current review aims to highlight the crucial role of TNT metabolism in mediating TNT toxicity, via increased generation of reactive oxygen species. Cellular proliferation of reactive species results in depletion of cellular antioxidant enzymes, DNA and protein adduct formation, and oxidative stress. While TNT toxicity is well known, its ability to induce oxidative stress, resulting from its reductive activation, suggests that some of its toxic effects may be caused by its reactive metabolites. Hence, further research on TNT metabolism is imperative to elucidate TNT-induced toxicities.

3.
Front Physiol ; 15: 1338858, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38410809

RESUMO

Smoltification was found to impact both immune and stress responses of farmed Atlantic salmon (Salmo salar), but little is known about how salinity change affects salmon months after completed smoltification. Here, we examined (1) the effect of salinity change from brackish water to seawater on the stress and immune responses in Atlantic salmon and (2) evaluated if functional diets enriched with microalgae can mitigate stress- and immune-related changes. Groups of Atlantic salmon were fed for 8 weeks with different microalgae-enriched diets in brackish water and were then transferred into seawater. Samples of the head kidney, gill, liver and plasma were taken before seawater transfer (SWT), 20 h after SWT, and 2 weeks after SWT for gene-expression analysis, plasma biochemistry and protein quantification. The salmon showed full osmoregulatory ability upon transfer to seawater reflected by high nkaα1b levels in the gill and tight plasma ion regulation. In the gill, one-third of 44 investigated genes were reduced at either 20 h or 2 weeks in seawater, including genes involved in cytokine signaling (il1b) and antiviral defense (isg15, rsad2, ifit5). In contrast, an acute response after 20 h in SW was apparent in the head kidney reflected by increased plasma stress indicators and induced expression of genes involved in acute-phase response (drtp1), antimicrobial defense (camp) and stress response (hspa5). However, after 2 weeks in seawater, the expression of antiviral genes (isg15, rsad2, znfx1) was reduced in the head kidney. Few genes (camp, clra, c1ql2) in the gill were downregulated by a diet with 8% inclusion of Athrospira platensis. The results of the present study indicate that salinity change months after smoltification evokes molecular stress- and immune responses in Atlantic salmon. However, microalgae-enriched functional diets seem to have only limited potential to mitigate the related changes.

4.
Environ Sci Technol ; 57(48): 20169-20181, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37933956

RESUMO

Submerged munitions from World War I and II are threatening human activities in the oceans, including fisheries and shipping or the construction of pipelines and offshore facilities. To avoid unforeseen explosions, remotely controlled "blast-in-place" (BiP) operations are a common practice worldwide. However, after underwater BiP detonations, the toxic and carcinogenic energetic compounds (ECs) will not completely combust but rather distribute within the marine ecosphere. To shed light on this question, two comparable World War II mines in Denmark's Sejerø Bay (Baltic Sea) were blown up by either low-order or high-order BiP operations by the Royal Danish Navy. Water and sediment samples were taken before and immediately after the respective BiP operation and analyzed for the presence of ECs with sensitive GC-MS/MS and LC-MS/MS technology. EC concentrations increased after high-order BiP detonations up to 353 ng/L and 175 µg/kg in water and sediment, respectively, while low-order BiP detonations resulted in EC water and sediment concentrations up to 1,000,000 ng/L (1 mg/L) and >10,000,000 µg/kg (>10 g/kg), respectively. Our studies provide unequivocal evidence that BiP operations in general lead to a significant increase of contamination of the marine environment and ecotoxicological risk with toxic ECs. Moreover, as compared to high-order BiP detonations, low-order BiP detonations resulted in a several 1000-fold higher burden on the marine environment.


Assuntos
Explosões , Poluentes Químicos da Água , Humanos , Espectrometria de Massas em Tandem , Cromatografia Líquida , Oceanos e Mares , Água , Poluentes Químicos da Água/toxicidade
5.
Toxics ; 11(4)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37112574

RESUMO

Submerged munitions are present in marine waters across the globe. They contain energetic compounds (ECs), such as TNT and metabolites thereof, which are considered carcinogenic, exhibit toxic effects in marine organisms, and may affect human health. The aim of this study was to investigate the occurrence of ECs and their trends in blue mussels from the annual collections of the German Environmental Specimen Bank sampled over the last 30 years at three different locations along the coastline of the Baltic and North Sea. Samples were analyzed by GC-MS/MS for 1,3-dinitrobenzene (1,3-DNB), 2,4-dinitrotoluene (2,4-DNT), 2,4,6-trinitrotoluene (TNT), 2-amino-4,6-dinitrotoluene (2-ADNT), and 4-amino-2,6-dinitrotoluene (4-ADNT). The first signals indicating trace levels of 1,3-DNB were observed in samples from 1999 and 2000. ECs were also found below the limit of detection (LoD) in subsequent years. From 2012 onwards, signals just above the LoD were detected. The highest signal intensities of 2-ADNT and 4-ADNT, just below the LoQ (0.14 ng/g d.w. and 0.17 ng/g d.w., respectively), were measured in 2019 and 2020. This study clearly shows that corroding submerged munitions are gradually releasing ECs into the waters that can be detected in randomly sampled blue mussels, even though the concentrations measured are still in the non-quantifiable trace range.

6.
Molecules ; 28(4)2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36838956

RESUMO

2,4,6-Trinitrotoluene (TNT) is an aromatic pollutant that is difficult to be degraded in the natural environment. The screening of efficient degrading bacteria for bioremediation of TNT has received much attention from scholars. In this paper, transcriptome analysis of the efficient degrading bacterium Buttiauxella sp. S19-1 revealed that the monooxygenase gene (BuMO) was significantly up-regulated during TNT degradation. S-ΔMO (absence of BuMO gene in S19-1 mutant) degraded TNT 1.66-fold less efficiently than strain S19-1 (from 71.2% to 42.9%), and E-MO mutant (Escherichia coli BuMO-expressing strain) increased the efficiency of TNT degradation 1.33-fold (from 52.1% to 69.5%) for 9 h at 180 rpm at 27 °C in LB medium with 1.4 µg·mL-1 TNT. We predicted the structure of BuMO and purified recombinant BuMO (rBuMO). Its specific activity was 1.81 µmol·min-1·mg-1 protein at pH 7.5 and 35 °C. The results of gas chromatography mass spectrometry (GC-MS) analysis indicated that 4-amino-2,6-dinitrotoluene (ADNT) is a metabolite of TNT biodegradation. We speculate that MO is involved in catalysis in the bacterial degradation pathway of TNT in TNT-polluted environment.


Assuntos
Trinitrotolueno , Biodegradação Ambiental , Trinitrotolueno/metabolismo , Oxigenases de Função Mista , Escherichia coli/metabolismo
7.
Sci Total Environ ; 857(Pt 1): 159324, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36216058

RESUMO

In addition to endangering sea traffic, cable routes, and wind farms, sunken warship wrecks with dangerous cargo, fuel, or munitions on board may emerge as point sources for environmental damage. Energetic compounds such as TNT (which could leak from these munitions) are known for their toxicity, mutagenicity, and carcinogenicity. These compounds may cause potential adverse effects on marine life via contamination of the marine ecosystem, and their entry into the marine and human food chain could directly affect human health. To ascertain the impending danger of an environmental catastrophe posed by sunken warships, the North Sea Wrecks (NSW) project (funded by the Interreg North Sea Region Program) was launched in 2018. Based on historical data (derived from military archives) including the calculated amount of munitions still on board, its known location and accessibility, the German World War II ship "Vorpostenboot 1302" (former civilian name - "JOHN MAHN") was selected as a case study to investigate the leakage and distribution of toxic explosives in the marine environment. The wreck site and surrounding areas were mapped in great detail by scientific divers and a multibeam echosounder. Water and sediment samples were taken in a cross-shaped pattern around the wreck. To assess a possible entry into the marine food chain, caged mussels were exposed at the wreck, and wild fish (pouting), a sedentary species that stays locally at the wreck, were caught. All samples were analyzed for the presence of TNT and derivatives thereof by GC-MS/MS analysis. As a result, we could provide evidence that sunken warship wrecks emerge as a point source of contamination with nitroaromatic energetic compounds leaking from corroding munitions cargo still on board. Not only did we find these explosive substances in bottom water and sediment samples around the wreck, but also in the caged mussels as well as in wild fish living at the wreck. Fortunately so far, the concentrations found in mussel meat and fish filet were only in the one-digit ng per gram range thus indicating no current concern for the human seafood consumer. However, in the future the situation may worsen as the corrosion continues. From our study, it is proposed that wrecks should not only be ranked according to critical infrastructure and human activities at sea, but also to the threats they pose to the environment and the human seafood consumer.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Animais , Humanos , Ecossistema , II Guerra Mundial , Fontes Geradoras de Energia , Espectrometria de Massas em Tandem , Vento , Peixes , Água/análise , Poluentes Químicos da Água/análise
8.
Toxics ; 10(11)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36422895

RESUMO

The Baltic and North Seas still contain large amounts of dumped munitions from both World Wars. The exposure of the munition shells to the seawater causes corrosion, which leads to the disintegration of shells and a leakage of energetic compounds, including the highly toxic 2,4,6-trinitrotoluene (TNT), and consequently threatening the marine environment. To evaluate the risk of accumulation of energetic compounds from conventional munitions in the marine food chain, we analyzed the presence of TNT and its metabolites 2-amino-4,6-dinitrotoluene (2-ADNT) and 4-amino-2,6-dinitrotoluene (4-ADNT) as well as their byproducts 1,3-dinitrobenzene (1,3-DNB) and 2,4-dinitrotoluene (2,4-DNT) in different tissues (including muscle, liver, kidney, brain, and bile) from 25 Common Eiders (Somateria mollissima) from the Danish Baltic Sea. Tissues were prepared according to approved protocols, followed by GC-MS/MS analysis. None of the aforementioned energetic compounds were detected in any of the samples. This pilot study is one of the first analyzing the presence of explosive chemicals in tissues from a free-ranging predatory species. This study highlights the need for continuous monitoring at different levels of the trophic chain to increase our knowledge on the distribution and possible accumulation of energetic compounds in the marine environment in order to provide reliable data for decision-making tools and risk assessments.

9.
Chem Biol Interact ; 354: 109833, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35085582

RESUMO

The α, ß-unsaturated aldehydes 4-oxonon-2-enal (4ONE) and 4-hydroxynon-2-enal (4HNE) are products of unsaturated fatty acids and ROS, and can be formed in lipid-rich tissues such as neurons. As strong electrophiles, both compounds react with DNA and proteins, and are capable of inactivating enzymes. However, both the human carbonyl reductase and the carbonyl reductase Drosophila melanogaster Sniffer are known to reduce 4ONE, a major lipid peroxidation product, to a less or non-toxic form. In this study, products formed during carbonyl reduction of 4ONE and 4HNE by recombinant Sniffer proteins from Daphnia magna and Daphnia pulex were investigated. A high-performance liquid chromatography analysis showed that Sniffer from D. magna converted 35.6% of 4ONE to 11.9% HNO and 23.7% 4HNE, while D. pulex converted 34.5% of this substrate to 14.8% HNO and 19.7% 4HNE. Thus, 4HNE is the main product formed from the sniffer-mediated reduction of 4ONE. The kinetic parameters obtained from the reduction of 4ONE were Km = 13.9 ± 2.1 µM, kcat = 1.53 s-1, kcat/km = 0.11 s-1 µM-1 for D. magna Sniffer and Km = 29.2 ± 4.3 µM, kcat = 0.64 s-1, kcat/km = 0.02 s-1 µM-1 for D. pulex Sniffer. These results demonstrate that Sniffer from D. magna and D. pulex are important enzymes involved in the carbonyl reductive biotransformation of 4ONE, a cytotoxic lipid peroxidation product. Noteworthy, the catalytic properties of both Daphnia Sniffer enzymes reflect previous findings with Sniffer from Drosophila melanogaster.


Assuntos
Aldeídos
10.
Chem Biol Interact ; 354: 109823, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35065925

RESUMO

Members of the aldo-keto reductase and short-chain dehydrogenase/reductase enzyme superfamilies catalyze the conversion of a wide range of substrates, including carbohydrates, lipids, and steroids. These enzymes also participate in the transformation of xenobiotics, inactivation of the cytostatics doxo- and daunorubicin, and play a role in the development of cancer. Therefore, inhibitors of such enzymes may improve therapeutic outcomes. Plant-derived compounds such as anthraquinones have been used for medicinal purposes for several centuries. In the current study, the inhibitory potential of selected anthrone and anthraquinone derivatives (from plants) was tested on six recombinant human carbonyl reducing enzymes (AKR1B1, AKR1B10, AKR1C3, AKR7A2, AKR7A3, CBR1) isolated from an Escherichia coli expression system. Overall, the least inhibition was observed with the anthrone derivative aloin, while IC50 values obtained with the anthraquinone derivatives (frangula emodin, aloe emodin, frangulin A, and frangulin B) and the aldo-keto reductase AKR1B10 were in the low micromolar range (3.5-16.6 µM). AKR1B1 inhibition was significantly weaker in comparison with AKR1B10 inhibition (IC50 values > 50 µM). The strongest inhibition was observed with the short-chain dehydrogenase/reductase CBR1. AKR7A2, AKR7A3, and AKR1C3 were not, or less inhibited by inhibitor concentrations of up to 50 µM. Analysis of the kinetic data suggests noncompetitive or uncompetitive inhibition mechanisms. The new inhibitors described here may serve as lead structures for the development of future drugs.


Assuntos
Aldeído Redutase
11.
Chem Biol Interact ; 351: 109752, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34801537

RESUMO

2,4,6-trinitrotoluene (TNT) is a known source of reactive oxygen species (ROS), which cause oxidative stress in aquatic ecosystems. Carbonyl reductases (CRs) are one of several possible defense mechanisms induced against ROS products, especially those that result in the 'so-called' carbonyl stress. Daphnia magna, a freshwater organism living in stagnant freshwater bodies, expresses four copies of the CR gene (Dma_CR1, Dma_CR2, Dma_CR3 and Dma_CR4). In this study, induction of all four copies of Dma_CR by 2-amino-4,6-dinitrotoluene (2-ADNT) and 4-amino-2,6-dinitrotoluene (4-ADNT), was investigated. Reverse transcription polymerase chain reaction (RT-PCR) analysis of treated daphnids revealed up-regulation of Dma_CR1 alone in response to TNT, but not 2-ADNT and 4-ADNT (which are key metabolites of TNT). This concentration- and time-dependent up-regulation in mRNA-expression was observed both in the presence and absence of light, in the same magnitude. Moreover, significant change in mRNA-expression could be observed 8 h after treatment with TNT. In the presence of TNT, the antioxidant N-acetylcysteine (NAc) could not reverse TNT-induced up-regulation of Dma_CR1 mRNA-expression. On the other hand, withdrawal of TNT from the culture medium caused a significant reduction in the TNT-induced mRNA-expression of Dma_CR1 within 24 h. These findings highlight the potential of Dma_CR1 as a biomarker for biomonitoring of TNT levels in freshwater bodies.


Assuntos
Carbonil Redutase (NADPH)/metabolismo , Daphnia/efeitos dos fármacos , Trinitrotolueno/farmacologia , Regulação para Cima/efeitos dos fármacos , Poluentes Químicos da Água/farmacologia , Compostos de Anilina/farmacologia , Animais , Biomarcadores/metabolismo , Carbonil Redutase (NADPH)/genética
12.
Toxics ; 9(10)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34678927

RESUMO

Extensive use and disposal of 2,4,6-trinitrotoluene (TNT), a primary constituent of explosives, pollutes the environment and causes severe damage to human health. Complete mineralization of TNT via bacterial degradation has recently gained research interest as an effective method for the restoration of contaminated sites. Here, screening for TNT degradation by six selected bacteria revealed that Buttiauxella sp. S19-1, possesses the strongest degrading ability. Moreover, BuP34O (a gene encoding for protocatechuate 3,4-dioxygenase-P34O, a key enzyme in the ß-ketoadipate pathway) was upregulated during TNT degradation. A knockout of BuP34O in S19-1 to generate S-M1 mutant strain caused a marked reduction in TNT degradation efficiency compared to S19-1. Additionally, the EM1 mutant strain (Escherichia coli DH5α transfected with BuP34O) showed higher degradation efficiency than DH5α. Gas chromatography mass spectrometry (GC-MS) analysis of TNT degradation by S19-1 revealed 4-amino-2,6-dinitrotolune (ADNT) as the intermediate metabolite of TNT. Furthermore, the recombinant protein P34O (rP34O) expressed the activity of 2.46 µmol/min·mg. Our findings present the first report on the involvement of P34O in bacterial degradation of TNT and its metabolites, suggesting that P34O could catalyze downstream reactions in the TNT degradation pathway. In addition, the TNT-degrading ability of S19-1, a Gram-negative marine-derived bacterium, presents enormous potential for restoration of TNT-contaminated seas.

13.
Chem Biol Interact ; 350: 109685, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34653397

RESUMO

The increasing levels of estrogens and pollution by other steroids pose considerable challenges to the environment. In this study, the genome of Gordonia polyisoprenivorans strain R9, one of the most effective 17 beta-estradiol- and steroid-degrading bacteria, was sequenced and annotated. The circular chromosome of G. polyisoprenivorans R9 was 6,033,879 bp in size, with an average GC content of 66.91%. More so, 5213 putative protein-coding sequences, 9 rRNA, 49 tRNA, and 3 sRNA genes were predicted. The core-pan gene evolutionary tree for the genus Gordonia showed that G. polyisoprenivorans R9 is clustered with G. polyisoprenivorans VH2 and G. polyisoprenivorans C, with 93.75% and 93.8% similarity to these two strains, respectively. Altogether, the three G. polyisoprenivorans strains contained 3890 core gene clusters. Strain R9 contained 785 specific gene clusters, while 501 and 474 specific gene clusters were identified in strains VH2 and C, respectively. Furthermore, whole genome analysis revealed the existence of the steroids and estrogens degradation pathway in the core genome of all three G. polyisoprenivorans strains, although the G. polyisoprenivorans R9 genome contained more specific estrogen and steroid degradation genes. In strain R9, 207 ABC transporters, 95 short-chain dehydrogenases (SDRs), 26 monooxygenases, 21 dioxygenases, 7 aromatic ring-hydroxylating dioxygenases, and 3 CoA esters were identified, and these are very important for estrogen and steroid transport, and degradation. The results of this study could enhance our understanding of the role of G. polyisoprenivorans R9 in estradiol and steroid degradation as well as evolution within the G. polyisoprenivorans species.


Assuntos
Actinobacteria/genética , Actinobacteria/metabolismo , Poluentes Ambientais/metabolismo , Estradiol/metabolismo , Esteroides/metabolismo , Actinobacteria/classificação , Animais , Composição de Bases , Biodegradação Ambiental , Disruptores Endócrinos/metabolismo , Estrogênios/metabolismo , Genoma Bacteriano , Humanos , Família Multigênica , Filogenia , Especificidade da Espécie
14.
Front Microbiol ; 12: 626048, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659134

RESUMO

Bacteria are ubiquitous and live in complex microbial communities. Due to differences in physiological properties and niche preferences among community members, microbial communities respond in specific ways to environmental drivers, potentially resulting in distinct microbial fingerprints for a given environmental state. As proof of the principle, our goal was to assess the opportunities and limitations of machine learning to detect microbial fingerprints indicating the presence of the munition compound 2,4,6-trinitrotoluene (TNT) in southwestern Baltic Sea sediments. Over 40 environmental variables including grain size distribution, elemental composition, and concentration of munition compounds (mostly at pmol⋅g-1 levels) from 150 sediments collected at the near-to-shore munition dumpsite Kolberger Heide by the German city of Kiel were combined with 16S rRNA gene amplicon sequencing libraries. Prediction was achieved using Random Forests (RFs); the robustness of predictions was validated using Artificial Neural Networks (ANN). To facilitate machine learning with microbiome data we developed the R package phyloseq2ML. Using the most classification-relevant 25 bacterial genera exclusively, potentially representing a TNT-indicative fingerprint, TNT was predicted correctly with up to 81.5% balanced accuracy. False positive classifications indicated that this approach also has the potential to identify samples where the original TNT contamination was no longer detectable. The fact that TNT presence was not among the main drivers of the microbial community composition demonstrates the sensitivity of the approach. Moreover, environmental variables resulted in poorer prediction rates than using microbial fingerprints. Our results suggest that microbial communities can predict even minor influencing factors in complex environments, demonstrating the potential of this approach for the discovery of contamination events over an integrated period of time. Proven for a distinct environment future studies should assess the ability of this approach for environmental monitoring in general.

17.
Toxics ; 9(3)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809806

RESUMO

To determine the amount of the explosives 1,3-dinitrobenzene, 2,4-dinitrotoluene, 2,4,6-trinitrotoluene, and its metabolites in marine samples, a toolbox of methods was developed to enhance sample preparation and analysis of various types of marine samples, such as water, sediment, and different kinds of biota. To achieve this, established methods were adapted, improved, and combined. As a result, if explosive concentrations in sediment or mussel samples are greater than 10 ng per g, direct extraction allows for time-saving sample preparation; if concentrations are below 10 ng per g, techniques such as freeze-drying, ultrasonic, and solid-phase extraction can help to detect even picogram amounts. Two different GC-MS/MS methods were developed to enable the detection of these explosives in femtogram per microliter. With a splitless injector, limits of detection (LODs) between 77 and 333 fg/µL could be achieved in only 6.25 min. With the 5 µL programmable temperature vaporization-large volume method (PTV-LVI), LODs between 8 and 47 fg/µL could be achieved in less than 7 min. The detection limits achieved by these methods are among the lowest published to date. Their reliability has been tested and confirmed by measuring large and diverse sample sets.

18.
Arch Toxicol ; 95(7): 2255-2261, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33837803

RESUMO

Since World War I, considerable amounts of warfare materials have been dumped at seas worldwide. After more than 70 years of resting on the seabed, reports suggest that the metal shells of these munitions are corroding, such that explosive chemicals leak out and distribute in the marine environment. Explosives such as TNT (2,4,6-trinitrotoluene) and its derivatives are known for their toxicity and carcinogenicity, thereby posing a threat to the marine environment. Toxicity studies suggest that chemical components of munitions are unlikely to cause acute toxicity to marine organisms. However, there is increasing evidence that they can have sublethal and chronic effects in aquatic biota, especially in organisms that live directly on the sea floor or in subsurface substrates. Moreover, munition-dumping sites could serve as nursery habitats for young biota species, demanding special emphasis on all kinds of developing juvenile marine animals. Unfortunately, these chemicals may also enter the marine food chain and directly affect human health upon consuming contaminated seafood. While uptake and accumulation of toxic munition compounds in marine seafood species such as mussels and fish have already been shown, a reliable risk assessment for the human seafood consumer and the marine ecosphere is lacking and has not been performed until now. In this review, we compile the first data and landmarks for a reliable risk assessment for humans who consume seafood contaminated with munition compounds. We hereby follow the general guidelines for a toxicological risk assessment of food as suggested by authorities.


Assuntos
Substâncias Explosivas , Trinitrotolueno , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Substâncias Explosivas/toxicidade , Peixes , Alimentos Marinhos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
19.
Mar Environ Res ; 167: 105264, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33725510

RESUMO

Baltic mussels (Mytilus spp.) were exposed to the explosive trinitrotoluene (TNT) for 96 h (0.31-10.0 mg/L) and 21 d (0.31-2.5 mg/L). Bioaccumulation of TNT and its degradation products (2- and 4-ADNT) as well as biological effects ranging from the gene and cellular levels to behaviour were investigated. Although no mortality occurred in the concentration range tested, uptake and metabolism of TNT and responses in antioxidant enzymes and histochemical biomarkers were observed already at the lowest concentrations. The characteristic shell closure behaviour of bivalves at trigger concentrations led to complex exposure patterns and non-linear responses to the exposure concentrations. Conclusively, exposure to TNT exerts biomarker reponses in mussels already at 0.31 mg/L while effects are recorded also after a prolonged exposure although no mortality occurs. Finally, more attention should be paid on shell closure of bivalves in exposure studies since it plays a marked role in definining toxicity threshold levels.


Assuntos
Mytilus , Trinitrotolueno , Poluentes Químicos da Água , Animais , Países Bálticos , Biomarcadores , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
20.
Aquat Toxicol ; 230: 105693, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33310671

RESUMO

Sea dumping of chemical warfare (CW) took place worldwide during the 20th century. Submerged CW included metal bombs and casings that have been exposed for 50-100 years of corrosion and are now known to be leaking. Therefore, the arsenic-based chemical warfare agents (CWAs), pose a potential threat to the marine ecosystems. The aim of this research was to support a need for real-data measurements for accurate risk assessments and categorization of threats originating from submerged CWAs. This has been achieved by providing a broad insight into arsenic-based CWAs acute toxicity in aquatic ecosystems. Standard tests were performed to provide a solid foundation for acute aquatic toxicity threshold estimations of CWA: Lewisite, Adamsite, Clark I, phenyldichloroarsine (PDCA), CWA-related compounds: TPA, arsenic trichloride and four arsenic-based CWA degradation products. Despite their low solubility, during the 48 h exposure, all CWA caused highly negative effects on Daphnia magna. PDCA was very toxic with 48 h D. magna LC50 at 0.36 µg × L-1 and Lewisite with EC50 at 3.2 µg × L-1. Concentrations at which no immobilization effects were observed were slightly above the analytical Limits of Detection (LOD) and Quantification (LOQ). More water-soluble CWA degradation products showed no effects at concentrations up to 100 mg × L-1.


Assuntos
Arsênio/toxicidade , Substâncias para a Guerra Química/toxicidade , Daphnia/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Arsênio/análise , Arsenicais/análise , Substâncias para a Guerra Química/análise , Cloretos/análise , Ecossistema , Dose Letal Mediana , Limite de Detecção , Água do Mar/química , Testes de Toxicidade Aguda , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...